Prion protein and metal interaction: physiological and pathological implications.

نویسندگان

  • Neena Singh
  • Dola Das
  • Ajay Singh
  • Maradumane L Mohan
چکیده

Metal induced free radicals are important mediators of neurotoxicity in several neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Similar evidence is now emerging for prion diseases, a group of neurodegenerative disorders of humans and animals. The main pathogenic agent in all prion disorders is PrP-scrapie (PrP(Sc)), a beta-sheet rich isoform of a normal cell surface glycoprotein known as the prion protein (PrP(C)). Deposits of PrP(Sc) in the brain parenchyma are believed to induce neurotoxicity through poorly understood mechanisms. Recent reports suggest that imbalance of brain metal homeostasis is a significant cause of PrP(Sc)-associated neurotoxicity, though the underlying mechanisms are difficult to explain based on existing information. Proposed hypotheses include a functional role for PrP(C) in metal metabolism, and loss of this function due to aggregation to the disease associated PrP(Sc) form as the cause of brain metal imbalance. Other views suggest gain of toxic function by PrP(Sc) due to sequestration of PrP(C)-associated metals within the aggregates, resulting in the generation of redox-active PrP(Sc) complexes. The physiological implications of some PrP(C)-metal interactions are known, while others are still unclear. The pathological implications of PrP(C)-metal interaction include metal-induced oxidative damage, and in some instances conversion of PrP(C) to a PrP(Sc)-like form. Despite its significance, only limited information is available on PrP-metal interaction and its implications on prion disease pathogenesis. In this review, we summarize the physiological significance and pathological implications of PrP-metal interaction on prion disease pathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation

The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...

متن کامل

Evolutionary Implications of Metal Binding Features in Different Species’ Prion Protein: An Inorganic Point of View

Prion disorders are a group of fatal neurodegenerative conditions of mammals. The key molecular event in the pathogenesis of such diseases is the conformational conversion of prion protein, PrPC, into a misfolded form rich in β-sheet structure, PrPSc, but the detailed mechanistic aspects of prion protein conversion remain enigmatic. There is uncertainty on the precise physiological function of ...

متن کامل

Physiological and Pathological Roles for MicroRNAs: Implications for Immunity Complications

MicroRNAs (miRNAs) are small non-coding regulatory RNAs molecules with a size of approximately 22 nucleotides that are implicated in regulating gene expression at the post-transcriptional regulatory levels. Inflammatory disorders especially autoimmune diseases (ADs) occur from an abnormal immune response of body against cells of their own specific tissues or multiple organ systems leading to ch...

متن کامل

Copper and Zinc Interactions with Cellular Prion Proteins Change Solubility of Full-Length Glycosylated Isoforms and Induce the Occurrence of Heterogeneous Phenotypes

Prion diseases are characterized biochemically by protein aggregation of infectious prion isoforms (PrPSc), which result from the conformational conversion of physiological prion proteins (PrPC). PrPC are variable post-translationally modified glycoproteins, which exist as full length and as aminoterminally truncated glycosylated proteins and which exhibit differential detergent solubility. Thi...

متن کامل

Therapies for human prion diseases.

The pathological foundation of human prion diseases is a result of the conversion of the physiological form of prion protein (PrP(c)) to the pathological protease resistance form PrP(res). Most patients with prion disease have unknown reasons for this conversion and the subsequent development of a devastating neurodegenerative disorder. The conversion of PrP(c) to PrP(res), with resultant propa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current issues in molecular biology

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2010